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Introduction  
 
Real options models provide a framework for project valuation and discrete decision-
making when uncertainty and irreversibility are central to the decision problem.  
Specifically, real options models allow for the solution of optimal stopping problems to 
generate expected-value-maximizing decision rules that are functions of underlying 
stochastic state variables.  This paper describes an algorithm developed for the numerical 
solution of real options models that include 1) interacting options and 2) stochastic 
processes other than the few that lead to analytical solutions or simpler numerical 
techniques. 
 
In the context of fisheries, real options models have applicability both for policy design 
and as positive models of the investment and participation decisions of fishermen.  In 
past work with these models, we have used model specifications that allowed for solution 
by minimization techniques such as nonlinear least squares (Tomberlin and Bosetti 
2004).  However, minimization techniques depend upon derivation of closed-form 
solutions to individual partial differential equations (PDEs), from which a system 
solution is then derived.  Such analytical solutions are available in only a few cases, the 
canonical example being that of geometric Brownian motion.  Many state variables that 
are likely to be useful in fisheries models, however, do not appear well represented by 
geometric Brownian motion.  Further, models with more than one state variable also 
make closed-form solution of individual PDEs difficult or impossible.  In such cases, an 
alternative to minimization methods must be found.   
 
Finite difference methods have long been used for the solution of PDEs, and are a natural 
alternative to minimization methods for solving real options models when closed-form 
solutions to PDEs are not available.  In the case of a single real option, represented by a 
single partial differential equation, well-known finite difference methods may be applied 
more or less directly.  However, in the case of multiple, interacting stopping problems, 
these methods will not suffice, as they do not capture the full value of decision flexibility.  
That is, when exercise of one option confers ownership of further options, the options 
must be valued simultaneously.  For example, suppose a fisherman is considering exit 
from a limited-entry fishery because other opportunities look more promising.  If the 
fisherman’s choice is simply between staying active in the fishery or exiting for good, the 
optimal stopping formulation is straightforward and standard real options solution 
techniques apply.  However, in fisheries it is usually the case that the decision problem is 
more complicated than a simple choice between remaining active in a fishery or exiting:  
the fisherman may be able to choose among several fisheries or to suspend fishing 
without giving up the right to fish in the future.   
 
In the case of limited-entry fisheries, this suspension option may  require ongoing 
purchase of an annual license to maintain the right to fish in the future.  This scenario 
leads to a decision problem in which the fisherman chooses among three actions: to 
remain active in the fishery, to suspend fishing while paying license fees, and to exit the 
fishery permanently.   While the fisherman may move freely between active fishing and 
suspension, the decision to exit is irreversible.  The benefit derived from each choice—
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active fishing, suspension, and exit—depends on subsequent available options.  Hence, 
these benefits and the value of choice flexibility represented options must be estimated 
simultaneously. 
 
Below, we develop an iterative method for solving such problems and demonstrate its 
relevance to fisheries investment and decision analysis.  To make the exposition easier to 
follow, we begin by presenting a simplified model in which the fisherman has to choose 
between remaining active in a fishery and exiting permanently.  We then introduce the 
option to suspend operations and describe the iterative finite difference algorithm that 
allows us to estimate option and project value in this more complicated decision 
environment.  The final section of the paper offers an assessment and conclusions.  
Throughout, we develop the argument in terms of a stochastic process for which 
analytical solutions are available for individual PDEs within our system, namely, 
geometric Brownian motion.  While our motivation in developing the iterative finite 
difference approximation is actually to move beyond geometric Brownian motion to 
more general stochastic processes, developing the presentation in terms of this more 
tractable stochastic process allows direct comparison of numerical results from our 
iterative solver with those from a nonlinear least squares technique. 
 
 
Valuing a Project with a Single Option 
 
We begin by describing two solution techniques for a simple exit decision problem, i.e., a 
choice between remaining active in a fishery or irrevocably surrendering the right to 
participate in this fishery.   These techniques are nonlinear least squares and finite 
difference approximation.  We suppose throughout that the fisherman’s objective is to 
maximize long-run expected payoff.  Our goals are to identify the value of the fishing 
enterprise, which includes the value of the option to exit, and to identify the threshold 
value of state variables at which it is optimal to exit.   
 
Here, we take the case of a single state variable, revenue, and assume that revenue can be 
represented as a geometric Brownian motion: 
 

RdzRdtdR σα +=)1  
 
where  R = revenue,  

α = the instantaneous drift rate 
σ = the instantaneous volatility rate 
dz = a standard Brownian motion 

 
The fisherman’s problem is to choose the action that will maximize the sum of current 
and expected future profits.  In continuous time, the Bellman’s equation is thus: 
 

]}|),,,([)1()(),,(max{),,,()2 1 RdttLCdRRFEdtdtLCRtRtLCRF ++++−−Ω= −ρ  
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where F = the value function, defined recursively 
 Ω = salvage value  
 C = periodic operating costs 
 L = periodic license fees 

ρ = fisherman’s discount rate 
 
Equation 2 presents the fisherman’s decision as a choice between stopping, in which case 
he receives a one-time payment of Ω(R,t), and continuing to fish, in which case he 
receives the current R, C, and L as well as an expected future value.  We wish to find Rx, 
the revenue level below which the optimal decision is to exit the fishery irreversibly.  
Simultaneously, we will derive expressions for the value of the fishing enterprise and for 
the value of the managerial options embedded in that enterprise, which here is simply the 
value of the exit option. 
 
We begin by noting that on the continuation range of R (i.e., where fishing has a higher 
expected payoff than quitting), the Bellman’s equation becomes 
 

]|),([)1()(),()3 1 RdttdRRFEdtdtLCRtRF ++++−−= −ρ  
 
Applying Ito’s lemma to the right-hand side, re-arranging terms and taking the limit as 
dt→0 yields a partial differential equation for the value of the fishing project (see, e.g., 
Dixit and Pindyck 1994, pp. 105-107): 
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A solution to this second-order ordinary differential equation is an equation F = g(R, C, 
L, α, σ), which can be solved by invoking the following boundary conditions: 
 

0),(')5
),()5
=
Ω=

tRFb
tRFa

x

x  

 
Equation (5a) is the value-matching condition, which says that at the point where the 
fisherman is indifferent between pursuing and abandoning the project, the expected value 
of staying in the fishery must equal the salvage value.  Equation (5b) is the smooth-
pasting condition, the requirement that the change in the values of the fishing project and 
the salvage value with respect to changes in R must be equal, for otherwise the optimal 
exit value of revenue would be at some other value of R.   
 
The model (4-5) is analogous to an American put option, which in general does not have 
a closed-form solution.  A solution to this model yields expressions for the expected 
value of the fishing project, for the value of the exit option embedded in the project, and 
for Rx.  Here, we present two methods for solving the model: a nonlinear least squares 
approach, which has limited applicability but will provide a check on our numerical 
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results as long as we work with geometric Brownian motions; and a finite difference 
approach, which interests us because it will be generalizable to stochastic processes that 
may better represent variables of interest. 
 
Nonlinear least squares 
 
If the time horizon over which the decision to be made is quite long (say more than ten 
years, which will commonly be the case among career fishermen), we can reasonably 
approximate the exit problem within an infinite time horizon setting, in which case the 
PDE in equation (4) has a solution of the following form: 
 

β

ραρ
ARLCRRF +

+
−

−
=)()6  

 
where A is a constant yet to be identified and β is a function of the parameters α, σ, and 
ρ.  The first two terms represent the discounted expected values of infinite revenue and 
cost streams, i.e, the value of staying in the fishery forever, while the third term 
represents the value of the exit option.  Using this result, conditions (5a-5b) lead to 
following systems of two nonlinear equations in two unknowns (Rx, Ax): 
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A system this simple may be solved algebraically for the exact solution.  In general, such 
systems of nonlinear equations may be solved by relying on extensions of Newton’s 
method or conversion to minimization problems [4, 5].  We adopt the latter approach, 
finding {Rx, Ax} that minimizes the sum of least squared errors: 
 

]}1{}{[min},{)8 212
,
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−

+−+
+

−
−

= ββ β
αρραρ

ARSARLCRAR ARxx
 

 
Solution of (8) is extremely fast and reliable for a wide range of parameter values.  We 
present results from applying this model to our study fishery below, but first describe a 
finite difference method for solving the same model. 
 
Finite difference approximation 
 
The nonhomogeneous portion of (4) represents the project’s flow value, while the 
homogeneous portion represents the exit option.  The finite difference method allows us 
to estimate the value of this exit option by approximating the homogeneous part of (4) 
over a discrete grid of revenue and time points, and over a finite time horizon ending at a 
terminal time TMAX.   The PDE is approximated as a set of partial difference equations, 
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which, after the imposition of some boundary conditions, can be solved using standard 
linear algebra techniques. 
 
First, we restate the homogeneous part of the PDE (4) for ease of reference: 
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Letting r be the grid index for revenue values R, t be the grid index for time, and ∆R and 
∆t the corresponding difference values, we begin by making the following substitutions 
for elements (4'): 
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which yields a difference equation system of the form 
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which approximates the homogeneous portion of the PDE we want to solve.  Rearranging 
(9) leads to a system of linear equations of the form 
 

rtrtrrtrrtr FFcFbFa ,11,,1,)10 +−− =++  
 
where 
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Note that the relationship in (10) between each time t and the subsequent time t+1 is 
defined by as many equations as there are grid points r.  The implicit finite difference 
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approach to this problem proceeds by solving this system recursively, moving backward 
through time.  Each value of Ft+1,r is defined in relation to values of Ft, as in (10).  
However, if we have a set of Ft+1 values for all r, the values of Ft for all R can be deduced 
as the solution to a set of linear equations.  Thus, Ft  is defined implicitly in relation to 
Ft+1.  Figure 1 presents a schematic view of this relation.   
 

Figure 1: A finite difference grid showing Ft in relation to Ft+1. 
 

ritF ,+

1, −r t F rtF ,

0 

  t +1 

 t - 1  
t 

 r - 1   r    r+1       RMAX 

1, +rtF

  TMAX 

 
 
In order to use this recursive approach to solving (10), we require boundary conditions at 
terminal time TMAX and at the lowest and highest values of revenue considered plausible.  
At TMAX, we can impose as boundary condition a vector that expresses the value of the 
static optimization problem faced by a fisherman who has to choose between quitting or 
accepting the expected value of staying the the fishery forever (since TMAX is by definition 
the point beyond which quitting is no longer an option).  This vector, known as the payoff 
in the option valuation literature, is simply  
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That is, the payoff at terminal time is the greater of a) the value of exercising the exit 
option (salvage value Ω less the expected net present value of the project given up) or b) 
zero, the value of allowing the option to expire unexercised.   
 
Another boundary condition applies at the lowest value of revenue on our grid, where we 
assume that the exit option will surely be exercised.  Here, the natural choice for this 
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lowest value is R=0, since R is necessarily non-negative (note the inclusion of cost terms 
allows for the possibility of operating losses over some range of R).  The boundary 
condition at R=0 is simply the payoff to exercising the option when there is no revenue, 
i.e., the salvage value plus operating cost savings from terminating the fishing enterprise: 
 

ρ
LCF

MINR
+

+Ω=  

 
The final boundary condition applies at the highest value of revenue on our grid, which 
should be chosen so that it is well beyond the highest values of R that are feasible for Rx.  
That is, RMAX should be at a level at which we can reasonably suppose that fishermen will 
not exercise the exit option.  At this point, which will have to be chosen within the 
context of a particular problem, the boundary condition becomes  
 

0=
MAXRF  

 
That is, at very high revenues the value of the option to exit will be zero.  
 
By recursively solving the system of linear equations defined in (10) subject to the 
boundary conditions at TMAX, RMIN, and RMAX, we can arrive at the value of the exit option 
and the revenue level Rx below which the option will be optimally exercised for any 
given time horizon.    Choosing a suitably high TMAX yields an approximation to an 
infinite-horizon decision problem (assuming a positive discount rate), though the 
computational burden of keeping the grid fine enough for good approximation to the 
underlying PDE can be substantial.  We have found that working with time horizons of 
50 to 100 years requires at least 10,000 time steps.  This means that the linear system (10) 
must be solved 10,000 times, which can require many hours on a workstation (depending 
on the number of grid points in the r-dimension). 
 
 
Valuing a Project with Multiple, Interacting Options 
 
In most realistic settings, fishermen are likely to have several, often interacting, 
managerial options available to them.  For example, purchase of a commercial 
fisherman’s license may enable entry into several different fisheries among which the 
fisherman can move at will, subject to the fixed cost of gear purchase and configuration.  
Similarly, the value of a buyout offer will depend on whether the buyout is absolute or is 
conditional on the return of the fish stock to some level (in which case the fisherman 
could exercise a right of re-entry).   
 
Here, we focus on the case of a limited-entry fishery in which a fishing permit, once 
allowed to lapse, can not be purchased again ex novo.  The fisherman may choose among 
three states: active, idle, and retired.  Active and idle states require the annual purchase of 
a fishing permit; each year’s permit gives the fisherman the right (but not the obligation) 
to fish in that year, plus the right to purchase another permit in the following year.  A 
proper valuation of each of these states must account for the associated options, which 
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are interdependent in the following ways.  If an active fisherman exercises the option to 
idle his boat, he acquires an option to re-enter the fishery the following year and an 
option to exit permanently.  If a fisherman with an idled boat exercises the option to re-
activate, he acquires an option to idle the boat again in the future.  If a fisherman with an 
idled boat decides to exit the fishery, he has no further option to re-enter.  For the sake of 
simplicity, we do not consider the possibility of direct exit from active fishing, i.e., a boat 
must be idled before permanent exit.  Including a direct exit option would require 
estimation of another decision threshold but would not alter the model in any essential 
way. 
 
The fisherman’s decision problem can be represented by separate Bellman’s equations 
for the active and idle boats.  The Bellman’s equation for the active boat represents the 
choice of whether to remain active (the continuation decision) or to idle the boat (the 
stopping decision):   
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where the first line is the expected value of maintaining the active project and the second 
line is the value of choosing to idle (which consists of the salvage value1 less transition 
costs TI and license costs, plus the expected value of the idle boat, which include the 
value of the option to re-activate the boat in the future).  We seek RI, the value of R at at 
which the fisherman is indifferent between remaining active and idling (and below which 
idling is optimal).    
 
In the Bellman’s equation for the idle boat, the decision problem is to choose either to 
remain idle (the continuation decision), to re-activate the boat (one stopping decision), or 
to exit the fishery for good (another stopping decision).  The Bellman’s equation in this 
case becomes: 
  

}0
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where the first term is the expected value of re-entering the fishery (the expected value of 
the active boat less salvage and transition costs TA), the second term is the value of 
remaining idle, and the third term is the value of exiting the fishery for good, which we 
assume is zero.  Notice that, in our formulation, the idle boat has already acquired the 
‘salvage value’ represented by the opportunity cost of time spent in the fishery, so that 
the choice between idling and exiting is not affected by the salvage value.  This is simply 

                                                 
1 By salvage value here we mean simply whatever value becomes available to the fisherman upon idling the 
boat, which could be revenues from other fisheries or earnings from non-fishing activities.  We do not 
mean scrap or sale value of the boat, as will become clear below.  Salvage value here relates specifically to 
the opportunity cost of fishing in the study fishery (the one generating revenues R). 
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an artifact of our model structure, which could easily be changed to include, for example, 
a scrap value upon exit. 
 
We wish to find RI, the value of R at which it becomes optimal for an active boat to idle; 
RA, the value of R at which it becomes optimal for an idle boat to re-activate; and RX, the 
value of R at which it becomes optimal for an idle boat to exit.   To identify these 
decision thresholds, we proceed as before, by defining and solving partial differential 
equations that hold on the continuation range of each discrete decision. 
 
Above RI, where the active boat chooses to remain active rather than idle, the PDE 
representing the continuation value is: 
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Between RA and RX, where the idle boat chooses to remain idle rather than re-enter or exit 
the fishery, the value of the suspended fishing project must satisfy a PDE given by: 
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The critical stopping values RI, RA, and RX  cannot be determined individually, since they 
are part of a single decision problem (e.g., the revenue threshold at which idling an active 
boat becomes optimal will depend on the fixed cost of re-activating the boat once idle).   
Below, we present two methods for finding these stopping values.  As above, we will 
suppose that revenue follows a geometric Brownian motion, so that we can develop a set 
of solutions based on a system of nonlinear equations derived from analytical solutions of 
individual PDEs.  This nonlinear systems solution will serve as a benchmark.  However, 
our real interest lies in the development of a solution method that does not rely on such 
restrictive assumptions regarding the stochastic processes involved.  For this purpose, we 
will employ an iterative finite difference technique, detailed further below. 
 
Nonlinear least squares 
 
Since, in this case, the individual continuation ranges can be represented as PDEs with 
closed-form solutions, we can proceed as before to arrive at a system of nonlinear 
equations representing the value-matching and smooth-pasting conditions.    Specifically, 
solutions to the PDEs above will be of the form:  
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Given the value of the ‘exited project,’ which is zero by construction (Vx=0), we have the 
following value-matching and smooth-pasting conditions: 
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This system of six equations in six unknowns (RI, RA, RX, KI, KA, KX) is more difficult to 
solve than the two-equation system of the simple exit problem, but is not conceptually 
different. 
 
 
Iterative finite difference approximation 
 
Because, in general, closed-form solutions of the form of (15-16) are not available, we 
proceed here with a finite difference method that allows us to approximate the values of 
various project states, the values of real options associated with those states, and the 
revenue levels at which those options are optimally exercised.  The key to this approach 
is the recognition, which is explicit in the nonlinear least squares formulation above, that 
the value of entering a new state may include the value of options to leave that state 
subsequently (e.g., the value of idling a boat includes the value of the option to re-
activate the boat or exit fishery, in addition to operating costs savings).  This notion is 
captured in our finite difference approach by including, in the payoff vector for each 
option, terms for the value of any options acquired upon exercise of the option being 
valued.  In our case, the payoff vector for the entry option includes a term of unknown 
form for the idling option acquired upon entry, V : I
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Similarly, the payoff vector for the idling option includes terms for both the option to re-
activate the boat and for the option to exit permanently: 
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Upon exit, no new options are acquired, and the option to re-activate the boat is given up, 
so the payoff vector for exercising the exit option (i.e, moving from idle to exited) is: 
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Because these payoff vectors are each defined in terms of unknown quantities (the 
unspecified values of options acquired), the finite difference algorithm of the previous 
section is not directly applicable.  Instead, we embed that algorithm in an iterative 
scheme in which the solution to one PDE provides an estimate of unknown option 
value(s) that can be used in the solution of another PDE.  Each of the PDEs is solved in 
sequence, and the sequence is repeated until the threshold value for the exercise of each is 
no longer changing.  Figure 2 on the following page shows the flow of the algorithm.  
Beginning (arbitrarily) with a vector of zeros for the value of the idling option and an 
optimal exercise threshold of zero for this option, the algorithm proceeds by iteratively 
estimating the three option values in sequence.  With each pass through the estimation 
process for the three options, estimates of the option values are updated and used in the 
subsequent iteration k+1.  The process continues until until the estimates of all three 
thresholds have converged to stable values. 
 
It’s worth pointing out that our convergence criterion is specified in terms of the 
estimated threshold values rather than the payoff or option value vectors.  We adopt this 
approach because it is simpler to understand and assess than would be a point-by-point 
comparison of the payoff or option value vectors.  Graphical analysis of the output makes 
it clear that little information is lost by taking this simplifying step. 
 
Table 1 presents results of applying the algorithm to (13-14), using parameters based on 
data from the California commercial salmon fishery.  Because the finite difference 
routines operate on a discrete grid, the threshold value reported here is the average of the 
last revenue level at which the option will still be held and the first at which it will no 
longer be held.  The grid size here, dR=0.07, is chosen to be small enough that the exact 
location between these two grid points of the true value is not a great concern.     
 

Table 1: Iterative finite difference and nonlinear least squares results 
 FD NLLS 
RA ($000s) 5.51 5.63
RI ($000s) 4.31 4.20
RX ($000s) 1.09 1.00
Solution Time (minutes) 41.6 0.38

 
The table shows that the finite difference and nonlinear least squares results are quite 
similar.  It’s important to remember that the nonlinear least squares results are themselves 
an approximation derived from a numerical routine, so the true error of the finite 
difference routine could be a bit more or less than the table suggests.  Depending on the 
purposes of the analysis, it may be advisable to increase the density of state variable and 
time grids, but for our own work, we are quite satisfied with this degree of accuracy.   
The most striking thing about the table is the hundred-fold difference in solution times.  
However, the solution time for the nonlinear least squares routine reported above does 
not include the search for a good set of initial values, which in our experience can often 
eat up much of the time savings from using this method. 
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Figure 2: The iterative finite difference algorithm 
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Assessment and conclusions 
 
The iterative finite difference method described here meets the need for a solution 
technique for real options models when two conditions hold jointly: 1) the decision 
problem includes multiple interacting options and 2) the stochastic processes representing 
state variables do not permit closed-form representations of the PDEs that represent the 
value of each management option.  When both these conditions are present, neither 
traditional finite difference methods nor methods based on solving systems of nonlinear 
equations can be used.   
 
In this paper, we have developed the iterative finite difference technique in the context of 
an example that does in fact permit solution by nonlinear systems (here, with nonlinear 
least squares), in order to enable direct comparison of our method with the nonlinear least 
squares approach.  Properly parameterized, the iterative finite difference method can 
yield solutions that are very comparable to the nonlinear systems methods (which are 
themselves approximations of the true solutions, being based on a Levenberg-Marquardt 
algorithm).  However, the real point of having the iterative finite difference solver 
available is to allow solution of problems characterized by more general stochastic 
processes that do not allow application of the nonlinear systems method.   
 
Our own interest in solving this class of models relates to limited-entry fisheries in which 
state variables such as average revenue appear to be mean-reverting, but the approach is 
applicable to a wide variety of real options analyses in which simpler solution techniques 
are not available.  While the technique can be computationally demanding, the added 
flexibility provided by the iterative finite difference solver can enable analysts to develop 
and solve more realistic models of project valuation, option valuation, and dynamically 
optimal discrete choice under uncertainty.   
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Appendix: Matlab Code for A Limited-Entry Permit Problem 
 
% SOLVES ENTRY-EXIT-MOTHBALL PROBLEM UNDER GBM WITH FINITE DIFFERENCES 
 
%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
RHO     =  0.05;        % CONTINUOUS DISCOUNT RATE 
L       =  0.410;       % LICENSE FEE (IN $000s) 
C       =  4.342;       % VARIABLE OPERATING COSTS (IN $000s) 
SALVAGE =  10;          % EXIT SALVAGE VALUE (IN $000s) 
ALPHA   =  -0.0093;     % DRIFT RATE  
SIGMA   =  0.32;       % VOLATILITY 
DELTA   =  RHO - ALPHA; % CONVENIENCE PARAMETER 
t       =  5000;   % NUMBER OF TIME POINTS IN MESH 
r       =  600;  % NUMBER OF REVENUE LEVELS IN MESH 
R_MAX   =  45;       % MAXIMUM REVENUE LEVEL IN MESH ($000S) 
R_MIN   =  0;           % MINIMUM REVENUE LEVEL IN MESH ($000S) 
T       =  50;       % TERMINAL TIME (IN YEARS) 
T_COST  = .1 ;     % COST OF SWITCHING BETWEEN MOTHBALL AND ACTIVE 
dt      = (T/t);  
dR      = (R_MAX - R_MIN)/r; 
R       = dR*(0:r) + R_MIN; 
% partial difference coefficients 
an =  + 0.5*(RHO-DELTA)*(1:r-1)*dt - 0.5*(SIGMA*SIGMA*(1:r-1).*(1:r-1))*dt; 
bn =  1 + SIGMA*SIGMA*(1:r-1).*(1:r-1)*dt + RHO*dt; 
cn =  - 0.5*(RHO-DELTA)*(1:r-1)*dt - 0.5*(SIGMA*SIGMA*(1:r-1).*(1:r-1))*dt; 
% coefficient matrix 
A = diag(bn) + diag(an(2:r-1), -1) + diag(cn(1:r-2), 1);   
 
Ventry = zeros(1, r+1); 
Vexit = zeros(1, r+1); 
Vmoth = zeros(1, r+1); 
 
 
for volta=1:7 
 
   Moth 

PAYOFFmoth = max(SALVAGE + Ventry + Vexit - L/RHO -(R/(RHO- 
                 ALPHA)-C/RHO-L/RHO )- T_COST, zeros(1,r+1)); 
V = zeros(t+1,r+1); 
V(t+1,:) = PAYOFFmoth;        % at terminal time you get payoff 
V(:,1)   = PAYOFFmoth(1,1);   % at min revenue, quitting gets you 
                                cost savings + salvage 
V(:,r+1) = PAYOFFmoth(1,end); % at max revenue, exit option is 
                                worthless 
for i = t:-1:1 
    y = V(i+1, 2:r)';             
    y(1) = y(1)-an(1)*V(i+1,1);         %boundary adjustment 
    y(end) = y(end)-cn(end)*V(i+1,end); %boundary adjustment 
    V(i, 2:r) = [A \ y]';       
    V(i, :) = max(PAYOFFmoth, V(i,:));   
end 
Vmoth = V(1,:) ; 
PAYOFFmothrecord(volta,:)=PAYOFFmoth; 
Vmothrecord(volta,:)=Vmoth; 
Rmothrecord(volta,:)=Vmoth-PAYOFFmoth; 
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   Entry 
PAYOFFentry = max(R/(RHO-ALPHA)-C/RHO-L/RHO + Vmoth -(SALVAGE- 
                  L/RHO+Vexit)-T_COST , zeros(1,r+1)); 
V = zeros(t+1,r+1); 
V(t+1,:) = PAYOFFentry ;       % at terminal time, you get payoff 
V(:,1)   = PAYOFFentry(1,1);   % at min revenue, you get  
                                 min PAYOFFentry 
V(:,r+1) = PAYOFFentry(1,end); % at max revenue, option to enter 
                                 is surely exercised 
for i = t:-1:1 
    y = V(i+1, 2:r)';             
    y(1) = y(1)-an(1)*V(i+1,1);         %boundary adjustment 
    y(end) = y(end)-cn(end)*V(i+1,end); %boundary adjustment 
    V(i, 2:r) = [A \ y]';            
    V(i, :) = max(PAYOFFentry, V(i,:));   
end 
 
Ventry = V(1,:) ; 
 
PAYOFFentryrecord(volta,:)=PAYOFFentry; 
Ventryrecord(volta,:)=Ventry; 
Rentryrecord(volta,:)=Ventry-PAYOFFentry; 
 

   Exit 
 PAYOFFexit = max(L/RHO - Ventry, zeros(1,r+1)); 

V = zeros(t+1,r+1); 
V(t+1,:) = PAYOFFexit ;       % at terminal time, you get payoff 
V(:,1)   = PAYOFFexit(1,1);   % at min revenue, quitting gets you  
                                min PAYOFFexit 
V(:,r+1) = PAYOFFexit(1,end); % at max revenue, exit option 
                                gets you max PAYOFFexit  
for i = t:-1:1 
y = V(i+1, 2:r)';             
y(1) = y(1)-an(1)*V(i+1,1);         %boundary adjustment 
y(end) = y(end)-cn(end)*V(i+1,end); %boundary adjustment 
V(i, 2:r) = [A \ y]';            
V(i, :) = max(PAYOFFexit, V(i,:));   
end 
Vexit = V(1,:) ; 
PAYOFFexitrecord(volta,:)=PAYOFFexit; 
Vexitrecord(volta,:)=Vexit; 
Rexitrecord(volta,:)=Vexit-PAYOFFexit; 

 
 
end 
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